Q.P. Code: 16CE112

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations July-2022 FLUID MECHANICS & HYDRAULIC MACHINERY

	(Common to ME & AGE)		
T	ime: 3 hours Max	. Mark	s: 60
	(Answer all Five Units $5 \times 12 = 60$ Marks)		
	UNIT-I		
1	Define Manometer. Briefly explain the types of Manometers in detail?	L2	12M
	OR		
2	a Define Hydro static law and derive the condition for pressure head.	L2	6M
	b Derive the condition for capillary rise and capillary fall with neat sketch.	L1	6M
	UNIT-II		
3	a What is Euler's equation of motion? How do you obtain Bernoulli's equation	L4	6M
	from it? Name the different forces present in a fluid flow.		
	b State Bernoulli's theorem for steady flow of an incompressible fluid. Derive the	L5	6M
	expression for Bernoulli's theorem from first principle and state the assumption		
	made for such a derivation.		
	OR		
4	a Define hydraulic gradient line and total energy line.	L2	6M
	b Explain briefly the analysis of free liquid jets.	L4	6M
_	<u>UNIT-III</u>	T 4	0.1
5	a Derive the expression for flow through pipes in series.	L1	6M
	b Derive the expression for flow through parallel pipes.OR	L1	6M
6	An external cylindrical mouth piece of diameter 150 mm is discharging water under	L1	12M
U	a constant head of 6 m. Determine the discharge and absolute pressure head of water	LI	12111
	at vena – contracta. Take Cd=0.855 and Cc for vena contracta = 0.62 and		
	atmospheric pressure head = 10.3 of water.		
	UNIT-IV		
7	What is similitude and describe the types of similarities	L4	12M
•	OR	2.	12111
8	Describe briefly Buckingham's pi- theorem.	L4	12M
	UNIT-V		
9	Describe briefly definitions of heads and efficiencies of a turbine	L4	12M
10	OR	T 2	103.5
10	Describe briefly the following: i) pumps in series ii) pumps in parallel	L3	12M
	1) pampo m series — ii) pampo m paranei		

*** END ***